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SUMMARY

Spatial discretization of transport and transformation processes in porous media requires techniques that
handle general geometry, discontinuous coefficients and are locally mass conservative. Multi-point flux
approximation (MPFA) methods are such techniques, and we will here discuss some formulations on
triangular grids with further application to the nonlinear Richards equation. The MPFA methods will be
rewritten to mixed form to derive stability conditions and error estimates. Several MPFA versions will be
shown, and the versions will be discussed with respect to convergence, symmetry and robustness when
the grids are rough. It will be shown that the behavior may be quite different for challenging cases of
skewness and roughness of the simulation grids. Further, we apply the MPFA discretization approach for
the Richards equation and derive new error estimates without extra regularity requirements. The analysis
will be accompanied by numerical results for grids that are relevant for practical simulation. Copyright
q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulation of transport and transformation processes in the subsurface has many appli-
cation areas. Oil and gas production has played an important economic role over many years, and
numerical modeling and simulation have helped in increasing the efficiency of exploiting these
natural resources. The remediation of contaminated sites is another important application area for
society and poses a challenge in highly industrialized and densely populated countries. Over the
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past years, the technologies used in the oil and gas industry have received attention for possible
sequestration of CO2 to handle one issue associated with climate changes.

It is important to develop and apply simulation techniques for all of the above issues, and
both a solid mathematical and a numerical foundations are crucial for forecasting of the physical
processes.

Mathematically, the models in the above cases consist of nonlinear systems of parabolic differen-
tial equations, in general, of convection-dominated type. In the case of simulation of simultaneous
flow of oil and water in porous media, the model of two phase flow is one of the core interests.
The governing equations can be transformed by the concept of a global pressure [1] into a strongly
coupled system of an elliptic equation and an (almost) hyperbolic equation.

In the case of contaminated sites, the modeling of the fluid transport constitutes the basis for the
simulation. Although groundwater modeling (single phase flow) leads to linear elliptic problems,
the consideration of the unsaturated soil results in the Richards equation (1 1

2 phase flow) which is
a nonlinear, degenerate elliptic–parabolic problem. Thus, in both these applications, linear elliptic
boundary value problems result algorithmically as subproblems. Their numerical treatment is
complicated by the porous medium properties: the natural variation of the conductivity is best
described as rough and heterogeneous. This impacts both single phase modeling and modeling
of the nonlinear equations that describe multi-phase flow in the porous medium. Regarding the
embedding in the iterative solution of more complex problems, further requirements arise for the
discretization methods: The methods should generate an explicit local velocity approximation as
the essential driving force for coupled or subordinate transport process. The methods should also
be locally mass conservative.

The sum of these requirements excludes classical finite difference methods and conformal finite
element methods. Over the last years, intensive research has been done concerning alternative
discretization methods that meet at least some of the above-mentioned requirements. These methods
range from node-oriented finite volume (FV) methods, or cell-oriented FV, mixed finite element
(MFE) methods and their variants with hybridization (HMFE) or extensions (EMFE) to discon-
tinuous Galerkin methods. The multi-point flux approximation (MPFA) methods are cell-oriented
FVMs that have been essentially developed and investigated in the last decade, cf. [2–9] among
others. On the other hand, the HMFE method has been applied and investigated intensively for
nonlinear degenerate elliptic–parabolic problems as the Richards equation cf. [10]. There is a
close relationship between the two methods, cf. [6], where a convergence analysis is presented for
MPFA on the basis of relations of this method to the MFE method [11]. A recent work [12] has
investigated how a local mimetic finite difference method can be derived and relate this to MPFA
methodology.

The convergence of the MFEM-scheme based on the Raviart–Thomas lowest-order elements
for Richards’ equation was analyzed in several papers [13–18]. Optimal order of convergence was
obtained for the time continuous scheme in [13, 14]. Following the ideas there, an explicit order
of convergence for the fully discrete scheme can be derived only by assuming extra regularity for
the solution. In order to also cover the degenerate case, the techniques from [13] were combined
with the one in [19] to obtain an explicit order of convergence for the MFEM scheme of Richards’
equation in a general framework in [15]. The proof there is based on the equivalence between a
conformal and a MFE schemes, at the continuous and semidiscrete level (time discrete). A further
extension, which allows now a Hölder continuous saturation, was developed in [16].

However, a convergence proof for the numerical scheme based on MPFA and Euler implicit
for the Richards equation is still missing. Here, we combine specific techniques for degenerate
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CONVERGENCE OF MPFA ON TRIANGULATIONS 1329

parabolic equations, MFE and MPFA discretizations to obtain a general convergence result for
the fully discrete scheme. The order of convergence is given only in terms of the discretization
parameters, i.e. the time step and the mesh diameter. The proof is done for both quadrilateral and
triangular grids. The result is obtained without assuming unrealistic regularity for the solution of
the Richards equation, which is the most important advantage of this approach.

The remainder of the paper is organized as follows: We first start with some basic assumptions
for the theory discussed here. In Section 2, we discuss the use of the MPFA discretization on
triangulations. Section 3 presents Richards’ equation and contains the new theoretical error esti-
mates when MPFA discretization is applied. Section 4 verifies the theoretical results for the MPFA
discretization on triangular grids numerically and discusses limitations of the MPFA methods.

1.1. Basic assumptions

The groundwater movement, taking into account the unsaturated subregions near the surface, is
described by the Richards equation, a nonlinear elliptic–parabolic partial differential equation:

�t�(�)−∇ ·K (�)∇(�+z)=0 on �×(0,T ] (1)

Here, �⊂Rd , d=1,2,3, is bounded with a Lipschitz continuous boundary, � is the pressure head,
� is the water content, K is the hydraulic conductivity and z is the height against the gravitational
direction. The equation results from the mass conservation (volume conservation by assuming
incompressibility of water) and Darcy’s law.

In the presentation of the MPFA method, we will use as a prototype for the spatial variables
of Richards’ equation, or equivalently the pressure equation of fully multiphase flow system,
cf. [20], the following elliptic equation:

−div(K(x)grad p)=g on � (2)

with �⊂R2 and boundary ��, p denoting the pressure and K a possible heterogeneous and
anisotropic conductivity tensor. The boundary condition is chosen for simplicity of exposition:

p(x)=0 on ��

Let L2(�) be the space of square integrable functions on � and H(div,�) the space of d-
dimensional vector functions having the components and the divergence in L2(�). We denote by
H1(�) the standard Sobolev spaces (see, e.g. [21]) and by H−1(�) the dual space of H1

0 (�).
The inner product 〈·, ·〉 is the L2(�)-inner product or the duality pairing between H1

0 (�) and
H−1(�). Throughout this work, ‖·‖ denotes the norm in L2(�) and ‖·‖1 the norm in H1(�).
We use analogous notations for the inner product and the corresponding norm in L2(0,T ;H),
with H being either L2(�), H1(�) or H−1(�). In addition, we often express u or u(t) instead
of u(t, x) and use C to denote a generic positive constant, not depending on the discretization or
regularization parameters.

Let {Th} denote a family of regular triangulations on �, where h is the maximum element
edge. Create a dual grid by dividing each cell into sub-cells given by the cell center and the edge
midpoint, cf. Figure 1. Denote the dual grid, Ih , where the dual cells, denoted interaction regions
I ∈Ih , consist of the N sub-cells with a common vertex. Denote the sub-cells of I by Ei , with
the inner sub-cell edges ei , i=1, . . . ,N . Finally, the set of all edges of Th(�) on � is denoted
by Eh(�).
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Figure 1. A triangulation, Th , and its dual grid, Ih .

Figure 2. The reference mapping FEi from one unit square onto a sub-cell.

Note that the triangle sub-cells become general quadrilaterals. We construct a mapping F , from
a unit square Ê onto each such quadrilateral sub-cell Ei , cf. Figure 2. Denote the vertex of each
sub-cell xi , i=1,2,3,4, in the counter clockwise direction, and let x1 be the triangle center. If
xi j =(xi −x j ) the transformation of the sub-cell is given by

F(x̂, ŷ)=x1+x21 x̂+x41 ŷ+(x32−x41)x̂ ŷ (3)

for (x̂, ŷ)∈ Ê . The Jacobian matrix of F is denoted by D=DEi and J = JEi the absolute value of
the Jacobian of the mapping.

2. THE MPFA

The MPFA discretization is a control volume formulation, where more than two pressure values
are used in the spatial approximation across cell edges. The unknowns are the cell pressures and
the half edge fluxes. The discretization is illustrated in Equation (2). The goal here is to define
and illustrate the discretization principles and qualities of the method in a context as simple as
possible. The spatial flux approximation is suited for approximation of the flux of Equation (1),
as well as for a fully multiphase flow problem, cf. [20], as can be studied in, for instance, [2].

Here, we describe the method in a mixed form, which can also be formulated as a MFE method
with broken Raviart–Thomas elements and a quadrature rule. The effect of the quadrature rule is
decoupling of the MFE equations and results in a block diagonal mass matrix that easily can be
inverted locally.
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2.1. MPFA as a MFE method

The MFE method that corresponds to MPFA as defined in, for instance, [3] can be expressed as
(qh, ph)∈RT

1/2
h ×Wh ⊂H(div,�)×L2(�) such that

ah(qh,v)−〈ph,divv〉 = 0 for all v∈RT
1/2
h

〈divqh,q〉 = 〈g,q〉 for all q∈Wh

(4)

The discrete space Wh ⊂ L2 consists of cellwise constants, whereas we define the broken RT-
elements by splitting the usual triangular RT-elements, cf. [22], from a three-dimensional to a
six-dimensional space. For each edge e, we split the flux in two components, associated with each
half edge. Then, let the new split element be linear in each half triangle, spanned by the midpoint
of the actual edge and the opposite vertex, cf. Figure 3(a), and denote these functions RT1/2.

The corresponding finite element space, RT
1/2
h is still in H(div,�), giving normal continuity

also inside each triangle, and can be defined by

RT
1/2
h :=

{
v∈H(div,�) : v|E ∈ 1

J
D(RT1/2),∀E ∈Th

}

Hence, the canonical degrees of freedom for the space RT
1/2
h are v ·n of each half edge in E

1/2
h .

If �h denotes the usual RTh-projection, cf. [22], the Brezzi condition applies only to the pair
(�hRT

1/2
h ,Wh). This corresponds to numerical tests where we see better behavior for the sum

of the half edge fluxes, �hqh .
We define the quadrature rule similarly as for the quadrilateral case, cf. [6]. Let vk |eik =vik ,

which is the conserved value v ·n= v̂·n̂ on the half edge eik , cf. Figure 3(b). Then

ah(q,v)=
3∑

i=1

2∑
j,k=1

�Ei
jkqi jvik (5)

for functions v,q in RT
1/2
h , and where � jk are components of �Ei , to be defined next.

If 〈
JK−1 1

J
Dq̂,

1

J
Dv̂
〉
Ê

=〈K̂−1q̂, v̂〉Ê (6)

we have

K̂−1= J−1DTK−1D (7)

(a) (b)

Figure 3. One cell split into six half triangles, (a), giving rise to, (b), three sub-cells
Êi and the six half cell edges ei j .
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On each sub-cell Ei , approximate K̂−1 by the non-symmetric quantity

�Ei =
1

JEi (x̂3)
DT

Ei
(x̂1)K−1DEi (x̂3) (8)

Here, x̂1=(0,0) is the triangle center, whereas x̂3=(1,1) becomes the triangle vertex. The motiva-
tion for this approximation is given in the following section. Now, the quadrature rule in Equation
(5) is then defined by the component, � jk , of �Ei .

The quadrature rule Equation (5) can also be applied on the BDM1-elements, cf. [22]. The
degrees of freedom for these elements are exactly the same as RT

1/2
h . In this case, choose

the degree of freedom associated with the two vertices of each edge; hence, vik =vk(xi ), for
v=(v1,v2).

2.2. Direct derivation of MPFA

Define a pressure space P(I ) on the interaction region I to be all linear on the sub-cells Ei , which
are continuous on the boundary of I . For each p∈ P(I ), let {pk}k=1,...,N be the values of p at the
corners of I and {�k}k=1,...,N the values of p at the continuity points, here the midpoints of the
edges, see Figure 4.

The local pressure p is then uniquely defined by the 2N degrees of freedom {pk,�k}. Let KE
be a cellwise constant approximation of K. Along half edge e of sub-cell Ei , let

qe|Ei =−KE grad p|Ei ·ne (9)

where ne is the edge normal with |ne|=|e|. The MPFA pressure space, PMPFA(I ), is now further
restricted to

PMPFA(I )={p∈ P(I ) : [qe]e=0, ∀e∈E1/2(I )} (10)

where E1/2(I ) represents the four inner edges of I , [ · ]e is the jump across edge e and qe is defined
by Equation (9). The uniqueness of PMPFA(I ) is shown in [6].

In a control volume formulation, the discretization lies in approximating the fluxes. This can
now be characterized locally on each interaction region. Here, we define the MPFA in a mixed
form, where the explicit flux expression is found after a local inversion on each interaction region.
The approximation is based on linear pressure and constant velocities in each sub-cell. The degrees
of freedom for linear pressure on each sub-cell are taken at the cell center and the two continuity

Figure 4. Two adjacent sub-cells. Let • denote the cell-centered pressures {pi }, the small • the cell edge
pressure {�i } at the continuity points and ◦ the edge velocities {qi } or edge flux.
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points on each edge. The continuity points may be chosen as the midpoints of the edges, but as we
will see later this may impact on the discretization properties. From the linear pressure variation
a constant gradient is found, based on the geometry of the sub-cell.

The normal component associated with a sub-cell Ei can be defined

[n1(x̂),n2(ŷ)]=
[

yŷ −yx̂

−xŷ xx̂

]
= JD−T (11)

from Equation (3), where the inner sub-cell edge normal is found for ŷ=0 and x̂=0, and the
outer cell normal of the sub-cell is found for ŷ=1 and x̂=1. The constant velocity is found from
the linear pressure substituted into Equation (9), and(

qi

qi−1

)
= 1

J (0,0)
[n1(1),n2(1)]TK[n1(0),n2(0)]

(
pi −�i

pi −�i−1

)
=�−1

Ei

(
pi −�i

pi −�i−1

)
(12)

for sub-cell Ei , with edge ei and ei−1, cf. Figure 4. The cell center is always x̂1=(0,0) for all
sub-cells. The cell vertices are always x̂3=(1,1) for all sub-cells. Therefore, inverting �−1

Ei
gives

Equation (8).
Let the components of �Ei be denoted by �ijk , for j,k=1,2. A similar expression on the

adjacent sub-cell Ei+1 makes elimination of the edge pressure �i possible. This gives the following
expression associated with half edge ei :

(�i11+�i+1
22 )qi +�i12qi−1+�i+1

21 qi+1= pi+1− pi (13)

This inverse formulation of MPFA can also be found in [5, 23]. By deriving the similar equations
for the other interior edges of I , we obtain a N×N system of the form:

Aq=Bp (14)

where the components of Bp are pressure differences, q=(q1, . . . ,qN )T, and⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(�111+�222) �221 0 · · · �112

�212 (�211+�322) �321 0 · · ·
0 �312 (�311+�422) �421
...

...
. . .

...

�121 0 · · · �N
12 (�N

11+�122)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

Together with the control volume formula, or the second equation in (4), this gives a local system:(
A B

BT 0

)(
q

−p

)
=
(
0

f

)
(16)

where we can solve for BTA−1Bp= f on each interaction region. The mixed system (16) is exactly
the blocks corresponding to each dual cell from the MFE method (4). Note that unless the involved
sub-cells are parallelograms, in which case � is symmetric, A is not symmetric. We, therefore,

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:1327–1351
DOI: 10.1002/fld



1334 R. A. KLAUSEN, F. A. RADU AND G. T. EIGESTAD

have to impose the stability criterion:

det(�+�T)>0 (17)

This ensures the symmetric part of � to be positive definite.

2.3. MPFA variations

Above, the continuity point � was given as the edge midpoints, cf. [24] which is standard. Anal-
ogously, the 1

4 of each sub-cell edge can be used, as introduced by Edwards and Rogers [25].
The family of MPFA schemes with different continuity points was first presented in [4, 25], and
a study for general structured/unstructured grids can be found in [7, 26].

In the case of edge midpoints, the discretization favors sub-cells that are close to or asymptotically
approach squares or parallelograms, cf. [11, 27]. This is the case for quadrilateral grids, but is
impossible to achieve for triangular grids. We now instead propose to divide the edges into 1

3 parts
and use the 1

3 edge points as the two continuity points for each edge. The result is a symmetric
MPFA method derived in physical space. This will take advantage of the simpler triangular cell
shape compared with the quadrilateral cells.

We introduce the notation C( 12 ), C( 13 ) and C( 14 ), for the different choices of continuity points, �,
on each half edge, where C( 12 ) means the edge midpoint. The variational triangle spanned by pi ,�i
and �i−1, illustrated in Figure 4, is used for approximation of the linear variation and is shown in
Figure 5 for the different continuity points.

Unfortunately, the C( 13 ) and C( 14 ) methods do not by construction reduce to a two-point flux

for the so-called K-orthogonal grids, which is the case when K̂ from Equation (7) is diagonal. This
means that the method does not reduce to the essential 1D finite difference method with harmonic
mean in the case of essentially 1D flow across an edge with discontinuous conductivity. Extra tests
are needed to recover two-point fluxes in such cases. On the other hand, no extra stability criteria
such as (17) are needed for the C( 13 ) version since the method is symmetric.

Lemma 1
The physical-space-based MPFA-C( 13 ) methods are always symmetric and can be interpreted as a
3
2 -scaled reference-space-based method with vertex evaluation.
The physical-space-based MPFA-C( 13 ) methods can also be interpreted as a MFE method with

BDM1 elements.

Proof
The physical-space-based MPFA-C( 13 ) methods can be described analogously to the description
in Equation (12). The mapping F given by Equation (3) now goes onto the 1

3 edge parallelogram

Figure 5. The variational triangle for C( 12 ), C( 13 ) and C( 14 ).
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CONVERGENCE OF MPFA ON TRIANGULATIONS 1335

Figure 6. The scaled mapping for the physical space MPFA-C( 13 ) methods.

shown in Figure 6, whereas we still use the full sub-cell edge normals. Let the superscript C( 13 )

denote components associated with the C( 13 )-parallelogram mapping. The analog to Equation (12)
will then read(

qi

qi−1

)
= 1

JC(1/3)(0,0)
[n1(1),n2(1)]TK[nC(1/3)

1 (0),nC(1/3)
2 (0)]

(
pi −�i

pi −�i−1

)
(18)

where ni (1), i=1,2, is the same edge normal as used in Equation (12). The parallelogram has
edges with length equal to 1

3 of the full cell edge length; hence, nC(1/3)
i (0)= 2

3ni (1), i=1,2.
Further JC(1/3)(0,0)= JC(1/3)(1,1). Therefore,

1

JC(1/3)(0,0)
[n1(1),n2(1)]TK[nC(1/3)

1 (0),nC(1/3)
2 (0)]

= 3/2

JC(1/3)(1,1)
[nC(1/3)

1 (1),nC(1/3)
2 (1)]TK[nC(1/3)

1 (1),nC(1/3)
2 (1)]

= 3

2
K̂C(1/3)(1,1) (19)

Also, note that K̂C(1/3)(1,1)=K̂(1,1), since the scaling of J is the square of that of D. The
physical-space-based MPFA-C( 13 ) can now be described by (4), with � jk from Equation (5) given

as elements of 2/3K̂−1(1,1), on sub-cell Ei , instead of the non-symmetric evaluation given in
Equation (8). The resulting methods are always symmetric since K̂−1(1,1) is symmetric. Denote
the associated symmetric bilinear form aC(1/3)

h (·, ·). This bilinear form can now be used onBDM1
elements with vik =vk(xi ), for v=(v1,v2) and xi the cell vertex of sub-cell Ei . �

To achieve the needed regularity for any analysis, the conductivity tensor K has to be smooth,
whereas in practical simulations K will be a positive-definite constant tensor given for each cell.
The approximation of smooth functions by cellwise constant values does not reduce any first-order
approximation; therefore, the further presentation is built on the assumption that K has constant
values on each cell and that the needed regularity is achieved.

The physical space MPFA-C( 13 ) methods over triangular grids can be expressed as a perturbed
MFE method with BDM1 elements, cf. Lemma 1. In this case, the perturbation of the MFE
method is given by the perturbation aC(1/3)

h (·, ·) of a(·, ·). The perturbation error here is given
in Lemma 3. Note that on triangular element RT0⊂BDM1, and also constant velocity fields,
P2
0 ⊂BDM1. The lemma shows that the perturbed bilinear form is exact on uniform flow or

constant velocity fields.
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Note that the mixed finite element methods with BDM1 elements described here are closely
related to the multipoint MFE methods described in [9].
Lemma 2
Let q0∈ P2

0 (E), v∈BDM1(E)= P2
1 (E), for all E ∈Th . Then

aC(1/3)
h (q0,v)=a(q0,v)

Proof
On each sub-cell Ei , let xi denote the cell vertex with x̂i =(1,1). Then, cf. Equation (7), we have

K̂−1
Ei

(x̂i )= J−1(x̂i )DT(x̂i )K−1D(x̂i )

Choose the degrees of freedom of the BDM1 elements such that

v(xi )= 1

JC(1/3)(x̂i )
DC(1/3)(x̂i )ṽ

for v∈BDM1, and ṽ=[vi1,vi2]T the discrete values on the sub-cell edges. From Equation (5),

aC(1/3)
h (q0,v) =

3∑
i=1

∑
j,k=1

�Ei ,C(1/3)
jk qi jvik

= 3

2

3∑
i=1

q̃T0 K̂
−1
Ei

(x̂i )ṽ

= 3

2

3∑
i=1

JC(1/3)(x̂i )qT0 (xi )K−1v(xi ) (20)

Since

JC(1/3)(x̂i )= JC(1/3)(1,1)=|nC(1/3)
1 (1)×nC(1/3)

2 (1)|= 2
3 |Ei |= 2

3 (
1
3 |E |)

we have

aC(1/3)
h (q0,v)=

3∑
i=1

|E |
3

qT0K
−1v(xi ) (21)

Now qT0K
−1v∈ P2

1 (E) and the quadrature rule given in Equation (21) is exact on linear integrands
so that

aC(1/3)
h (q0,v)=

∫
E
qT0K

−1vdx=a(q0,v) �

It is straightforward to show that aC(1/3)
h (v,v)1/2 also is equivalent to the L2 norm on BDM1.

This result means that there exist constants �0,�1>0, independent of h, such that

�0‖v‖2�aC(1/3)
h (v,v)��1‖v‖2 (22)

The following lemma controls the extra perturbations of the MFE method, which gives the
MPFA-C( 13 ) method.
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Lemma 3
Let q∈(H1(�))2, v∈BDM1 and �h be the classical RT0-projection. Then there is a constant c,
independent of h, such that

|aC(1/3)
h (�hq,v)−a(q,v)|�ch‖q‖1‖v‖

Proof
Let �0 be theL2-projection onto P2

0 (E), cellwise constant vector functions. Then from Lemma 2,
Equation (22) and classical interpolation results, cf. [22], we have

|aC(1/3)
h (�hq,v)−a(q,v)| = aC(1/3)

h ((�h−�0)q,v)+a(�0q−q,v)

� c(‖�hq−q‖+‖�0q−q‖)‖v‖
� ch‖q‖1‖v‖ �

An analog analysis to [6, 28] of a reference-space-based MPFA method-based BDM1 element
is given in [9], with main focus on quadrilateral grids. Note that for quadrilateral grids, this method
only converges for cells that asymptotically approach parallelogram cells, but the analysis does
also apply to triangular grids.

3. RICHARDS’ EQUATION

We now return to Richards’ equation (1),

�t�(�)−∇ ·K (�)∇(�+z)=0

from the introduction. For the two-coefficient functions, different models can be chosen to end
up with a single unknown in (1). These are provided essentially by soil particularities and allow
reducing all the unknowns in the above equation to a single unknown. For negative pressure values,
the nonlinearities are monotonically non-decreasing. Therefore, (1) is a nonlinear parabolic equation
there, but positive pressure values lead to a constant value of saturation and represent the region
below the groundwater table, where the pressure obeys an elliptic equation. As a consequence,
we deal with a nonlinear elliptic–parabolic equation whose solution is typically lacking regularity.
Together with the high nonlinearities appearing in the coefficient functions, this makes the analysis
of numerical schemes for problem (1) in general difficult. A classical trick to combine the two
nonlinearities in (1) in just one is to apply the Kirchhoff transformation, as suggested in [29]:

K :R−→R, � �−→
∫ �

0
K (�(s))ds

Since K (�(s)) is positive, this transformation can be inverted and Equation (1) can be rewritten
in terms of a new variable, p :=K(�). Now, defining

b(p) :=�◦K−1(p), k(b(p)) :=K ◦�◦K−1(p) (23)

and letting ez denote the vertical unit vector, Equation (1) becomes

�t b(p)−∇ ·(∇ p+k(b(p))ez)=0 in (0,T ]×� (24)
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By the above transformation, diffusion becomes linear in Equation (1). However, the problem
may still remain degenerate, leading to solutions that lack regularity.

In what follows, we let � denote the boundary of the domain �. Let J =(0,T ] be a finite time
interval. We are interested in solving (24) endowed with initial and boundary conditions:

�t b(p)−∇ ·(∇ p+k(b(p))ez) = 0 in J×�

p = p0 in 0×�

p = 0 on J×�

(25)

Throughout this section, we make use of the following assumptions.

(A1) �⊂Rd is bounded with Lipschitz continuous boundary.
(A2) b∈C1 is non-decreasing and Lipschitz continuous.
(A3) k(b(z)) is continuous and bounded in z and satisfies, for all z1, z2∈R,

|k(b(z2))−k(b(z1))|2�Ck(b(z2)−b(z1))(z2−z1)
(A4) b(p0) is essentially bounded (by 0 and 1) in � and p0∈L2(�).

Remark 1
Assumption (A2) can be replaced by a more general Hölder continuity, as done in [16].

A mixed formulation for problem (25) reads as follows.

Problem 1
Find (p, q̃)∈L2(J×�)×X such that b(p)∈L∞(J×�) and for all t ∈ J the equations

〈b(p(t))−b(p0),w〉+〈∇ · q̃(t),w〉=0 (26)

〈q̃(t),v〉−
∫ t

0
〈p(s),∇v〉ds+

∫ t

0
〈k(b(p(s)))ez,v〉ds=0 (27)

hold for all w∈L2(�) and v∈H(div,�), with X :=H1(J ;(L2(�))d)∩L2(J ;(H1(�))d).

We proceed with the time discretization of Problem 1. The resulting scheme is equivalent with
the Euler implicit scheme. Let N>1 be an integer giving the time step �=T/N . For a given
n∈{1,2, . . . ,N }, with tn =n� we define the time discrete mixed variational problem.

Problem 2
Let n∈{1, . . . ,N } and pn−1 be given. Find (pn,qn)∈L2(�)×H(div,�) such that

〈b(pn)−b(p0),w〉+�

〈
∇ ·

n∑
j=1

qj,w

〉
=0 (28)

a(qn,v)−〈pn,∇ ·v〉+〈k(b(pn))ez,v〉=0 (29)

for all w∈L2(�), and v∈H(div,�).
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3.1. Error estimates for the semidiscrete problem

The following result can be found in [15, Theorem 4.6, p. 1468].
Theorem 1
Assuming (A1)–(A4), if (p, q̃) is the solution of Problem 1 and (pn,qn) solves Problem 2 (n∈
{1, . . . ,N }), we have

N∑
n=1

∫ tn

tn−1

〈b(p(t))−b(pn), p(t)− pn〉dt

+
∥∥∥∥ N∑
n=1

∫ tn

tn−1

(p(t)− pn)dt

∥∥∥∥
2

1

+
∥∥∥∥q̃(T)−�

N∑
n=1

qn
∥∥∥∥
2

�C�

where C does not depend on the time step �.

Remark 2
Using the Lipschitz continuity of b(·) together with the above estimates, we can immediately
obtain an error estimate for the saturation:

N∑
n=1

∫ tn

tn−1

‖b(p(t))−b(pn)‖2 dt�C�

3.2. Error estimates for the fully discrete problem

We have already presented error estimates for the semidiscrete scheme, we continue by giving
estimates for the case semidiscrete to discrete. In the end of the section, we then conclude with a
convergence result for the fully discrete MPFA scheme for the Richards equation. We distinguish
the two cases of quadrilateral and triangular grids. In the first case, the fully discrete scheme is
based on the broken Raviart–Thomas space, whereas in the second one the discrete variational
formulations is based on the BDM1 space. Following [3], we have that MPFA for quadrilaterals
is equivalent with the MFE method defined as follows.

Problem 3Q
Let n∈{1, . . . ,N }. Find (pnh ,q

n
h)∈Wh×RT

1/2
h such that

〈b(pnh),wh〉+�

〈
n∑
j=1

∇ ·qjh,wh

〉
=〈b(p0h),wh〉 (30)

ah(qnh,vh)−〈pnh ,∇ ·vh〉+ah(k(b(p
n
h))ez,vh)=0 (31)

for all wh ∈Wh and vh∈RT
1/2
h .

In the case of triangles, as described in Section 2.3, we come to the following MFE discrete
formulation.
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Problem 3T
Let n∈{1, . . . ,N }. Find (pnh ,q

n
h)∈Wh×BDM1 such that

〈b(pnh),wh〉+�

〈
n∑
j=1

∇ ·qjh,wh

〉
=〈b(p0h),wh〉 (32)

aC(1/3)
h (qnh,vh)−〈pnh ,∇ ·vh〉+aC(1/3)

h (k(b(pnh))ez,vh)=0 (33)

for all wh ∈Wh and vh∈BDM1.
For clarity, in the following section we recapitulate the basic estimates, which have been proved

in [3] and Section 2.3. These estimates will be used to prove the convergence of MPFA schemes
applied to Richards’ equation. We first present error estimates for the case of quadrilateral grids.
The triangular case is much easier to prove, and the result is given as a remark, without a complete
proof.

3.3. Basic estimates

For the physical space MPFA-C( 12 ) methods over quadrilateral grids, the following two lemmas
can be found in [6].
Lemma 4
For all vh∈RT

1/2
h and wh ∈Wh , there holds

ah(wh,vh−�hvh)=0 (34)

From which the following lemma follows.

Lemma 5
Let q∈(H1(�))2, v∈RT

1/2
h , and �h is the classical RT0-projection, cf. [22]. Then there is a

constant c, independent of h, such that

|ah(�hq, (I −�h)v)|�ch‖q‖1‖(I −�h)v‖
The following lemma is the equivalent of Lemma 3, Section 2.3, for the case of triangular grids.

Lemma 6
Let q∈(H1(�))2, v∈RTh and �h is the classical RT0-projection, cf. [22]. Then there is a
constant c, independent of h, such that

|ah(�hq,v)−a(q,v)|�ch‖q‖1‖v‖
Important for our analysis are also the estimates:

�m‖vh‖2 � ah(vh,vh)��M‖vh‖2 ∀vh∈RT
1/2
h

�m‖vh‖2 � aC(1/3)
h (vh,vh)��M‖vh‖2 ∀vh∈BDM1

(35)

3.4. Error estimates in the case of quadrilateral grids

Expressing MPFA as a perturbed MFEM, the perturbation can be divided into two steps. First a
splitting of the classical Raviart–Thomas elements into RT

1/2
h , and finally a quadrature rule is
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applied to the bilinear form. To control these perturbations, two basic lemmas are used, cf. [6].
This first lemma controls the accuracy of the splitting, and the second lemma controls the accuracy
of the quadrature rule, cf. Lemmas 5 and 6. The following results are obtained by combining the
techniques in [6] with the one in [15].
Theorem 2
Let n∈{1, . . . ,N }, and assume that (A1)–(A4) hold. If (pn,qn) solves Problem 2 and (pnh ,q

n
h) is

the solution of Problem 3Q, then there holds

�
N∑

n=1
〈b(pn)−b(pnh), p

n− pnh〉+�2
∥∥∥∥ N∑
n=1

(�hqn−qnh)

∥∥∥∥
2

�Ch2
N∑

n=1
(�‖qn‖21+�‖pn‖21) (36)

Proof
We will give the proof just for the case without convection, for an easier understanding of the
ideas. The same techniques would also be used in the case with convection and, additionally, one
will make use of Lemma 4 and the continuity of ah(·, ·). We begin by introducing the notation:

enq=
n∑
j=1

(�hqj−qjh)∈RT
1/2
h

By subtracting Equations (30) and (31) from (28) and (29), respectively, we obtain

〈b(pn)−b(pnh),wh〉+�

〈
∇ ·

n∑
j=1

�h(qj−qjh),wh

〉
=0 (37)

a(qn,vh)−ah(qnh,vh)+〈pn− pnh ,∇ ·vh〉=0 (38)

for all wh ∈Wh and vh∈RT
1/2
h . The operator �h here denotes the classical RT0-projection.

From (38), it also follows that

a(qn,vh)−ah(qnh,vh)+〈Ph pn− pnh ,∇ ·vh〉=0 (39)

for all vh∈RTh . Ph here denotes the usual L2-projection, see, e.g. [15].
Now taking vh=�

∑n
j=1�h(qj−qjh)∈RTh ⊂RT

1/2
h , wh = Ph pn− pnh in (39) and (37), respec-

tively, and summing up the result from n=1 to N , we obtain

N∑
n=1

〈b(pn)−b(pnh), Ph p
n− pnh〉+

N∑
n=1

�a

(
qn,

n∑
j=1

�h(qj−qjh)

)

−
N∑

n=1
�ah

(
qnh,

n∑
j=1

�h(qj−qjh)

)
=0 (40)
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or equivalently

T1+
N∑

n=1
�

(
a

(
qn,

n∑
j=1

�h(qj−qjh)

)
−ah

(
�hqn,

n∑
j=1

�h(qj−qjh)

))

+
N∑

n=1
�ah

(
�hqn−qnh,

n∑
j=1

�h(qj−qjh)

)
=0 ⇔ T1+T21+T22=0 (41)

We estimate now each of the terms above separately:

T1=
N∑

n=1
〈b(pn)−b(pnh), p

n− pnh〉+
N∑

n=1
〈b(pn)−b(pnh), Ph p

n− pn〉=:T11+T12 (42)

For T11, using the Lipschitz continuity of b(·), there holds

T11�
1

2

N∑
n=1

〈b(pn)−b(pnh), p
n− pnh〉+C

N∑
n=1

‖b(pn)−b(pnh)‖2 (43)

Applying the inequality ab��1a2/2+b2/(2�1), where �1>0, T12 reads

|T12|��1
2

N∑
n=1

‖b(pn)−b(pnh)‖2+ 1

2�1

N∑
n=1

‖Ph pn− pn‖2 (44)

for all �1>0. Using Lemma 6 and

‖�hv‖�C‖v‖ ∀v∈RT
1/2
h (45)

we obtain for T21:

T21�C
N∑

n=1
�h‖qn‖1‖�henq‖�C1

N∑
n=1

�h‖qn‖1‖enq‖�
N∑

n=1

h2

2�2
‖qn‖21+C2�2

2

N∑
n=1

�2‖enq‖2 (46)

We now proceed by estimating T22,

T22 =
N∑

n=1
�ah

(
�hqn−qnh,

n∑
j=1

�hqj−qjh

)
+

N∑
n=1

�ah

(
�hqn−qnh,

n∑
j=1

(qjh−�hq
j
h)

)

= T221+
N∑

n=1
�ah

(
�hqn,

n∑
j=1

(qjh−�hq
j
h)

)
−

N∑
n=1

�ah

(
qnh,

n∑
j=1

(qjh−�hq
j
h)

)
(47)

= T221+T2221+T2222 (48)

Further, there holds

T221 = �

2
ah(eNq ,eNq )+ �

2

N∑
n=1

ah(�hqn−qnh,�hqn−qnh)

�C�‖eNq ‖2+C�
N∑

n=1
‖�hqn−qnh‖2 (49)
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To estimate the term T2221, we make use of Lemma 5 and inequality (45). It follows

T2221 �C
N∑

n=1
�h‖qn‖1

∥∥∥∥∥
n∑
j=1

(qjh−�hq
j
h)

∥∥∥∥∥
�C1

N∑
n=1

�h‖qn‖1‖enq‖

�C1

N∑
n=1

h2‖qn‖21+C1

N∑
n=1

�2‖enq‖2 (50)

We now use Equation (31) (we recall that we considered the case without convection) to show
that T2222=0:

T2222 = −
N∑

n=1
�ah

(
qnh,

n∑
j=1

(qjh−�hq
j
h)

)

= −�

〈
pnh ,∇ ·

n∑
j=1

(qjh−�hq
j
h)

〉
=0 (51)

From (41)–(51), choosing �1 properly and using the discrete Gronwall Lemma we obtain the
result. �

We have obtained above an estimate for the flux variable. To also obtain an upper bound for
the error in the pressure, we recall the following result (see [30] for the proof).

Lemma 7
Assuming (A1) and given a fh ∈Wh , a vh∈RTh exists such that

∇ ·vh= fh and ‖vh‖�C‖∇ ·vh‖
with C>0 being a constant not depending on h, fh or vh.

For the Raviart–Thomas finite elements, the following theorem can be found in [15]. We again
adapt the proof for the case of a MPFA scheme.

Theorem 3
Let n∈{1, . . . ,N } and assume that (A1)–(A4) hold. If (pn,qn) solves Problem 2 and (pnh ,q

n
h) is

the solution of Problem 3Q, then there holds

�

∥∥∥∥ N∑
n=1

(Ph p
n− pnh)

∥∥∥∥
2

�Ch2
N∑

n=1
(‖qn‖21+‖pn‖21) (52)

Proof
Again, we consider the case without convection, the extension to the general case being but
straightforward. By summing up Equation (39) form n=1 to N , we obtain

a

(
N∑

n=1
qn,vh

)
−ah

(
N∑

n=1
qnh,vh

)
+
〈

N∑
n=1

(Ph p
n− pnh),∇ ·vh

〉
=0 (53)
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for all vh∈RTh . By making use of Lemma 7, there exists vh∈RTh such that ∇ ·vh=∑N
n=1(Ph p

n− pnh) and

‖vh‖�C‖∇ ·vh‖=C

∥∥∥∥ N∑
n=1

(Ph p
n− pnh)

∥∥∥∥ (54)

Introducing this vh in (53), we obtain

∥∥∥∥ N∑
n=1

(Ph p
n− pnh)

∥∥∥∥
2

= a

(
N∑

n=1
qn,vh

)
−ah

(
N∑

n=1
�hqn,vh

)
+ah

(
N∑

n=1
(�hqn−qnh),vh

)

= T1+T2 (55)

We proceed by estimating now the terms T1 and T2 separately. By using Lemma 6 and estimate
(54), we obtain for the first term:

T1 �Ch

∥∥∥∥ N∑
n=1

qn
∥∥∥∥
1

‖vh‖

� Ch2

2�1

∥∥∥∥ N∑
n=1

qn
∥∥∥∥
2

1

+ �1
2

‖vh‖2

� Ch2

2�1�

N∑
n=1

‖qn‖21+C�1
2

∥∥∥∥ N∑
n=1

(Ph p
n− pnh)

∥∥∥∥
2

(56)

with �1>0 arbitrarily. For the second term in (55), we use the continuity of ah(·, ·). There holds

T2 �C

∥∥∥∥ N∑
n=1

(�hqn−qnh)

∥∥∥∥‖vh‖

� C

2�2

∥∥∥∥ N∑
n=1

(�hqn−qnh)

∥∥∥∥
2

+ �2
2

‖vh‖2

� C

2�2

∥∥∥∥ N∑
n=1

(�hqn−qnh)

∥∥∥∥
2

+C�2
2

∥∥∥∥ N∑
n=1

(Ph p
n− pnh)

∥∥∥∥
2

(57)

for all �2>0. Now using also Theorem 2 and choosing �1 and �2 properly, one obtains from
(55)–(57) result (52). �

The general convergence result can now be given for quadrilateral grids. One more assumption
is needed:

(A5) qn∈H1(�)d for all n∈{1, . . . ,N }.
Assumption (A5) is in the 1D case evidently satisfied, because there H(div,�)=H1(�). It also

holds in the multidimensional case if �� is smooth enough and k(·) is differentiable (see [15]). By
now combining the results obtained in Theorems 1–3 and using stability estimates for Problem 2
(as in [15, 16]), we obtain the following theorem.
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Theorem 4
Assuming (A1)–(A5) true, if (p, q̃) is the solution of Problem 1 and (pnh ,q

n
h) solves Problem 3Q

for all n∈{1, . . . ,N }, then there holds

∥∥∥∥ N∑
n=1

∫ tn

tn−1

(p(t)− pnh)dt

∥∥∥∥
2

+
∥∥∥∥q̃(T)−�

N∑
n=1

qnh

∥∥∥∥
2

�C(�+h2) (58)

Remark 3
An optimal order of convergence (�2+h2) can be shown by assuming extra regularity for the
solution (see [15, 16]). More general estimates, with an order of convergence depending on the
Hölder continuity of b(·), can be obtained by using the ideas in [16].
Remark 4
The same convergence results also hold for triangular grids. In this case, the proof of Theorem 2
follows immediately by using Lemma 3 and the ideas in [15, Proposition 4.10, p. 1470]. The proof
is much easier in this case because the MFE scheme is defined by using BDM1 elements and not
by the broken Raviart–Thomas space. This implies that the ∇ ·vh∈Wh , for vh∈BDM1, and the
only quantity that has to be fixed is

|aC(1/3)
h (�hq,v)−a(q,v)|

This is handled by Lemma 3. Further, the proofs of Theorems 2 and 4 are absolutely similar.

Remark 5
In both the case of quadrilaterals and triangles, the grid is assumed to be regular enough to satisfy
the technical lemmas necessary in the work with the used projectors.

4. NUMERICAL RESULTS

Next, we present numerical results for the various version of MPFA discretization on triangular
control volumes illustrated in Equation (2). The triangular grids that we use are generated from
underlying quadrilaterals, and we will test how the methods perform on various degrees of skewness,
anisotropy and grid aspect ratios. As mentioned above, there is a choice for continuity points in
the interaction region, cf. Section 2.3. If the MPFA-C( 13 ) method is used, the resulting coefficient
matrix is symmetric, whereas the standard midpoint method, C( 12 ), does in general not yield
symmetry.

Figure 7 shows a typical example of the rough grids that are used here, and for which convergence
of Equation (2) is studied. Here, all corners of a uniform grid are perturbed randomly by a factor
up to 70% of the associated triangle edge length. The grid is further stretched by a factor 100 in
the x-direction. Note that a stretching of the simulation domain corresponds to medium anisotropy
on a non-stretched domain.

We will here focus on the properties of the possible discretization schemes and differences
between them. The main differences are utilized by simple homogeneous permeability problems.
For numerical examples with discontinuous coefficient problems (for the C( 12 ) scheme), refer to
Bause and Hoffmann [31] for a more detailed study.
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In the numerical study below, we test the different MPFA triangle methods on various grids for
solutions of Equation (2). The error of the pressure p is measured by ‖ph− p(xc)‖, where xc is
the triangle centroid, whereas the error of the velocity q is measured by the discrete norm:

‖q−qh‖2h = ∑
E∈Th

∑
e∈E

(q(xe) ·ne−qe)
2|E |/3

where xe is the midpoint of edge e.

4.1. Discretization in physical space

Our first tests are on grids similar to the ones visualized in Figure 8, where the triangulation either
yields acute or non-acute angles. These grids are perturbations of the same order as the grid cell
size of underlying uniform triangulations on parallelogram domains and will be referred to as
rough grids, cf. [6]. The ‘acute’ triangulations describe a more regular family of grids, cf. [32]
and, therefore, seems the most appropriate and robust for the discretization. For the homogeneous
cases we test here, we will use the analytical solution of Equation (2):

cosh(�x/
√
kx )cos(�y/

√
ky) (59)

Figure 7. Example of rough triangulation of [0,1]×[0,0.01] on which Equation (2) is solved.

Figure 8. Various triangulations with perturbations: (a) predominantly non-acute
angles and (b) predominantly acute angles.
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which represents divergence-free flow on a homogeneous medium with anisotropic conductivity

K=
[
kx 0

0 ky

]
(60)

We first use parallelogram domains where the height and width have unit length, the medium is
isotropic, and the grids are n×n. The skewness of the domain is �/3, and the triangulation is
either acute or non-acute as in Figure 8. For uniform grid refinements on either of these domains,
the convergence is second order for both pressure and normal velocities in the discrete L2-norm.
These convergence rates are the same as the ones observed for the MPFA O-method on uniformly
refined quadrilateral grids, cf. [27]. In Figures 9 and 10, we have plotted the convergence behavior
for n×n grids where the grids are perturbed randomly by the same order as the grid cell size. As
seen from these figures, the observed convergence rates for the pressure for both the discrete L2-
and L∞-norms are close to second order, whereas the L2-errors of the normal velocities seem to
converge by order h1. This is again in accordance with the rates observed in [27] for rough grids.
The max errors for the normal velocities seem to converge by an order smaller than h1; this may
be more apparent for the non-acute triangulation. (The analytical pressure solution is different on
the two different parallelogram domains, so that the error level is not directly comparable.)

In Figure 11, we have plotted the corresponding results for the symmetric C( 13 ) method in
physical space for the triangulation that yields triangles with predominantly acute angles. As seen
from the plot, the convergence behavior is similar to the discretization that uses midpoints of edges
as potential continuity points, but note the fact that the errors are here significantly smaller for the
symmetric method.

Next, we test the convergence behavior on a parallelogram domain, where the grid aspect ratio is
gradually increased. It has been observed that the combination of rough grids and large grid aspect

Figure 9. Convergence for rough triangular grids: acute triangulation. Second-order convergence
seen for pressure and first order for normal velocities in discrete L2-norm. Roughly, first-order

convergence observed in L∞-norm.
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Figure 10. Convergence for rough triangular grids: non-acute triangulation. Almost second-order conver-
gence seen for pressure and first order for normal velocities in discrete L2-norm. Convergence rates in

L∞ somewhat smaller than first order.

Figure 11. Convergence behavior for symmetriced discretization on triangles. Angles are
mostly acute after grid perturbations; second-order convergence is observed for pressure and

first order is observed for normal velocities in L2-norm.

ratios leads to either the loss of convergence or diminished convergence rate for the O-method on
quadrilaterals (in physical space), cf. [33] for details. This has initiated alternative methods that
seek to reduce the number of cells that contributes to the flux stencils. The L-method introduced in
[33] seems to have much better convergence properties for rough grids, but monotonicity problems
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Figure 12. Convergence for the non-symmetric and symmetric methods in physical space for grid aspect
ratios of 1

100 . Only the symmetric method can be claimed to be convergent.

may still cause unwanted behavior. Note that both the O- and L-methods in physical space are in
general non-symmetric.

The MPFA O-method on triangular grids yields larger cell and flux stencils than the O-method
on quadrilaterals. The cell stencils from the grid in Figure 8 will in general contain up to 13
cells, and this could potentially cause problems with stability. In Figure 12, we have shown the
convergence behavior for the MPFA-C( 12 ) method (which is un-symmetric) on a �/3 parallelogram
domain where the medium is compressed by a factor 1

100 in the y-direction. As seen from the plot,
the error may behave fairly arbitrary from grid refinement to grid refinement, and it seems like
the method is not asymptotically convergent. Note, however, the trend of decreasing errors for the
initial refinements. For the symmetric MPFA-C( 13 ) method, the situation is completely different.
Although the discretization on triangles yields larger cell and flux stencils, the underlying symmetry
of the method has such a ‘strong’ effect that the discretization is now convergent. Both the pressure
and normal velocities converge; in particular, second-order convergence for the pressure and first
order for the normal velocities seem to be retained for the errors in discrete L2-norm. This is
indeed superior behavior compared with the O-method on quadrilateral grids for the same grid
aspect ratios, where convergence cannot be established!

4.1.1. Comments on discretization in reference space. In Section 2.3 and Lemma 1, we describe
the symmetric physical space MPFA-C( 13 ) method by a transformation of the domain to a reference
space. The reference space method is easy to implement via transformations of sub-cell conductivity
to unit squares. The reference space method is then convergent for all cases tested above. This
is again different from the behavior for the reference space method on quadrilaterals, where
convergence is lost for rough grids, and convergence may only be obtained for uniform grid
refinement.

In conclusion, the MPFA O-method on triangles has the potential to be symmetriced without
loosing convergence. Symmetry is obtained either through a smart choice of continuity point along
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Table I. Order of asymptotic pressure convergence for various MPFA methods.

Rough grids Unit aspect ratio 1
100 aspect ratio

MPFA-C( 12 ) O(h2) O(1)

MPFA-C( 13 ) O(h2) O(h2)

the flux edge (13 -points) in physical space or by making a transformation to computational space.
The methods are linked by Lemma 1. When large grid aspect ratios are introduced, convergence
seems to be retained, making the method superior compared with the O-method on quadrilateral
grids. The convergence properties of the methods are summarized in Table I.
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